Recent QCD Results from CDF

Inclusive and b Jet Cross Sections

Inclusive Jet Cross Section

- ✓ New inclusive jet
 measurements include 1fb⁻¹
 of data and extend to
 forward rapidity regions
- ✓ Good agreement between data and perturbative QCD
- in the forward region will reduce PDF uncertainties!

Measured b-jet cross section agrees with Next-to-Leading-Order pQCD within systematic uncertainties

W/Z + Jets Cross Section

Cross Sections for Production of a W boson with 1, 2, 3, and 4 Jets

- √ W/Z + jets is a possible signature for production of:
 - ✓ Top pair and single top
 - ✓ Higgs boson
 - ✓ Supersymmetric particles
 - ✓ QCD production of W/Z + jets is a large background for these processes
- ✓ Presence of W/Z ensures the kinematics of the event provide a good testing ground for pQCD
- Z + b-jet cross section also measured
- ✓ Probe of the *b* content of the proton
- ✓ Background for searches for new physics e.g. Higgs ZH_Zbb

Towards Exclusive Higgs Production at the LHC

Exclusive diphoton and dijet production provide a calibration for predictions of exclusive Higgs production – an attractive Higgs discovery channel at the LHC

Requires detectors in the far forward regions to ensure there are no particles there First evidence for exclusive __ production

- ✓ Three events containing 2 photons and nothing else observable in the CDF detector.
 - ✓ Cross section 0.14 $^{+0.14}_{-0.04}$ (stat) ± 0.03 (syst) pb
- ✓ QED-mediated exclusive ee production also observed for the first time in hadron-hadron collisions
- ✓ Cross section 1.6 $^{+0.5}_{-0.3}$ (stat) ± 0.03 (syst) pb agrees with QED prediction of 1.711 ± 0.008 pb
- ✓ Provides a good check for ___ production
- ✓ Exclusive dijet production being studied as well

Electroweak Physics at CDF

W Cross Section using Forward Electrons

Forward Electron Candidates Selected using Combined Calorimeter & Tracking Info

Ratio of Central to Forward

W → ev Cross Sections

constrains PDFs

 $\sigma(pp \rightarrow W \rightarrow ev) =$ 2796 ± 13 (stat) ± 95 (syst) ± 169 (lum) pb

 $R(exp) = 0.925 \pm 0.033$ NLO Predictions: 0.924 ± 0.037 (CTEQ) 0.941 ± 0.012 (MRST)

Z Forward-Backward Asymmetry

 $d\sigma (\cos\theta > 0) - d\sigma (\cos\theta < 0)$ $d\sigma (\cos\theta > 0) + d\sigma (\cos\theta < 0)$

CDF Run II Preliminary 364 pb

LO calculation

Unfolded (total err)

Unfolded (stat err

 M_{ee} (GeV/c²)

$$\mathbf{A_{FB}} = \frac{3\mathbf{E}}{8\mathbf{A}}$$

Z→ e⁺e⁻ A_{FB} 364 pb⁻¹

4 0.8 **→**

 $d\sigma / d\cos\theta = A (1 + \cos^2\theta) + B \cos\theta$

Measured Forward-Backward Asymmetry

Response Matrix corrects for Distortions in Mass Spectrum from Detector Resolution and Final State Radiation

Diboson Physics

WW Production Cross Section Measurement using 825 pb⁻¹

 $\sigma(pp \to WW) = 13.6 \pm 2.3 \text{ (stat)} \pm 1.6 \text{ (syst)}$ ± 1.2 (lum) pb

Upper Limit on WZ Production Cross Section of 6.35pb at 95% CL

Search for WZ Production in 825 pb⁻¹

S-channel diagrams give experimental access to triple gauge couplings (WWy or WWZ)

Anomalous Coupling Limits

Search for WW/WZ -> I v j j